
Chapter 17

Methodology

Logical Database Design for the
Relational Model

2

Logical Database Design for the
Relational Model

• Step 2 Using a Data Model (e.g., Relational
Data Model), Build logical data model and
validate it

– Step 2.1 Derive relations for logical data model

– Step 2.2 Validate relations using normalization

– Step 2.3 Check integrity constraints

3

Step 2.1 Derive relations for logical
data model

• Create relations for logical data model to
represent entities, relationships, and
attributes that have been identified

4

Step 2.1 Derive relations for logical
data model

• In this step, we derive relations for the logical data model
to represent the entities, relationships, and attributes

• We describe the composition of each relation using a
Database Definition Language (DBDL) for relational
databases

• Using the DBDL, we first specify the name of the relation
followed by a list of the relation’s simple attributes
enclosed in brackets

• We then identify the primary key and any alternate and/or
foreign key(s) of the relation

• Following the identification of a foreign key, the relation
containing the referenced primary key is given

• Any derived attributes are also listed together with how
each one is calculated

5

Step 2.1 Derive relations for logical
data model

• The relationship that an entity has with another
entity is represented by the primary key/foreign
key mechanism

• In deciding where to post (or place) the foreign
key attribute(s), we must first identify the
‘parent’ and ‘child’ entities involved in the
relationship

• The parent entity refers to the entity that posts
a copy of its primary key into the relation that
represents the child entity, to act as the foreign
key

6

Step 2.1 Derive relations for logical
data model

• We describe how relations are derived for the
following structures that may occur in a
conceptual data model:

• (1) strong entity types;
• (2) weak entity types;
• (3) one-to-many (1:*) binary relationship types;
• (4) one-to-one (1:1) binary relationship types;
• (5) one-to-one (1:1) recursive relationship types;
• (6) superclass/subclass relationship types;
• (7) many-to-many (*:*) binary relationship types;
• (8) multi-valued attributes.

Conceptual Data Model of all Users’ Views

8

Step 2.1 Derive relations for logical
data model

• (1) Strong entity types

– For each strong entity in data model,

• Create relation that includes all simple attributes of entity

• For composite attributes, include only constituent simple
attributes: fName and lName in the relation

Staff (staffNo, fName, lName, position, gender, DOB)
Primary Key staffNo

9

Step 2.1 Derive relations for logical
data model

(2) Weak entity types

– For each weak entity in data model,

• Create relation that includes all simple attributes of entity

• Primary key of weak entity is partially or fully derived
from each owner entity

Preference (prefType, maxRent)
Primary Key None (at present)

10

Step 2.1 Derive relations for logical
data model

• (3) One-to-many (1:*) binary relationship types

– For each 1:* binary relationship,
• Entity on ‘one side’ of relationship designated as parent

entity

• Entity on ‘many side’ designated as child entity

–Represent relationship by posting copy of
primary key attribute(s) of parent entity into
relation representing child entity
• Acts as foreign key

11

Step 2.1 Derive relations for logical
data model

• (3) One-to-many (1:*) binary relationship types

12

Step 2.1 Derive relations for logical
data model

• (4) One-to-one (1:1) binary relationship types

– Cardinality cannot be used to identify parent and child entities

– Participation constraints are used instead to decide:

– Options:

1) Combine entities involved into one relation

2) Create two relations and post copy of primary key from one
relation to other

– Consider the following:

• (a) mandatory participation (1:1 vs 1:1)on both sides of 1:1
relationship

• (b) mandatory participation (1:1 vs 0:1) on one side of 1:1
relationship

• (c) optional participation (0:1 vs 0:1) on both sides of 1:1
relationship

13

Step 2.1 Derive relations for logical
data model

(a) Mandatory participation (1:1 vs 1:1) on both sides
of 1:1 relationship

– Combine entities involved into 1 relation
– Choose one primary key of original entities to be

primary key of new relation
– Other primary key (if one exists) used as alternate key

14

Step 2.1 Derive relations for logical
data model

(a) Mandatory participation (1:1 vs 1:1) on both sides
of 1:1 relationship example:

• The Client States Preference relationship is an example
of a 1:1 relationship with mandatory participation on
both sides

Client (clientNo, fName, lName, telNo, prefType, maxRent,
staffNo)
Primary Key clientNo
Foreign Key staffNo references Staff(staffNo)

15

Step 2.1 Derive relations for logical
data model

• (b) Mandatory participation (1:1 vs 0:1) on one side of a 1:1
relationship

– Identify parent and child entities using participation
constraints (assuming not every client specifies preferences)

– Entity with optional participation side in relationship
designated as child

– Entity with mandatory participation designated as parent
– Place copy of primary key of parent in relation representing

child

16

Step 2.1 Derive relations for logical
data model

• (c) Optional participation (0:1 vs 0:1) on both sides of a 1:1 relationship

• Designation of parent and child entities arbitrary

• ‘Staff Uses Car’ Example

17

Step 2.1 Derive relations for logical
data model

• (5) one-to-one (1:1) recursive relationship types;

• For a 1:1 recursive relationship, follow the rules for
participation as described previously for a 1:1 relationship

• However, in this special case of a 1:1 relationship, the entity
on both sides of the relationship is the same

• For a 1:1 recursive relationship with mandatory
participation on both sides, represent the recursive
relationship as a single relation with two copies of the
primary key

• One copy of the primary key represents a foreign key and
should be renamed to indicate the relationship it represents
e.g. manager_id

18

Step 2.1 Derive relations for logical
data model

• (5) one-to-one (1:1) recursive relationship types;

• For a 1:1 recursive relationship with mandatory
participation on only one side, we have the option to
create a single relation with two copies of the primary
key as described previously,

OR

• to create a new relation to represent the relationship

• The new relation would have only two attributes, both
copies of the primary key

• For a 1:1 recursive relationship with optional
participation on both sides, again create a new relation
as described earlier

19

Step 2.1 Derive relations for logical
data model

• (6) superclass/subclass relationship types;

As described earlier in case of EERM

20

Step 2.1 Derive relations for logical
data model

• (7) Many-to-many (*:*) binary relationship types

– For each *:* binary relationship create a relation to
represent relationship (associative entity) and
include any attributes that are part of relationship

– Post copy of primary key attribute(s) of entities that
participate in relationship into new relation - act as
foreign keys

– Foreign keys also form primary key of new relation

• Possibly in combination with other attributes of
relationship

21

Step 2.1 Derive relations for logical
data model

(7) Many-to-many (*:*) binary relationship types

22

Step 2.1 Derive relations for logical
data model

• (8) Multi-valued attributes

– Create new relation to represent multi-valued attribute

– Include primary key of main entity in new relation - acts as foreign key

– Unless the multi-valued attribute is itself an alternate key of the entity,
the primary key of the new relation is the combination of the multi-
valued attribute and the primary key of the main entity

23

Step 2.1 Derive relations for logical
data model

(8) Multi-valued attributes

24

Summary of how to map entities and
relationships to relations

25

Step 2.1 Derive relations for logical
data model

• Document relations and foreign key attributes

– At the end of Step 2.1, document the composition
of the relations derived for the logical data model
using the DBDL

– Double check all primary and foreign keys again

Conceptual Data Model of all Users’ Views

Creating tables to represent specialization/generalization

Relations for the DreamHome example (Relational Schema)

Manager (staffNo, mgrStartDate, Bonus)

Primary Key staffNo

Foreign Key staffNo references Staff(staffNo)

Branch (branchNo,street,city,postcode,mgrNo)

Primary Key branchNo

Foreign Key mgrNo references Manger(staffNo)

Telephone (telNO, branchNo)

Primary Key telNO

Foreign Key branchNo references Branch(branchNo)

Staff (staffNo, fName, lName, position, gender, DOB, supervisorNo, branchNo)

Primary Key staffNo

Foreign Key supervisorNo references Staff(staffNo)

Foreign Key branchNo references Branch(branchNo)

Car (carNo, model, companyName ,staffNo)

Primary Key carNo

Foreign Key staffNo references Staff(staffNo)

Client (clientNo, fName, lName, telNo, prefType, maxRent, housNo, streetNo,

zipCode, city, country, staffNo)

Primary Key clientNo

Foreign Key staffNo references Staff(staffNo)

Viewing (clientNo, propertyNo, dateView, comment)

Primary Key clientNo, propertyNo

Foreign Key clientNo references Client(clientNo)

Foreign Key propertyNo references PropertyForRent(propertyNo)

Registration (clientNo, branchNo, staffNo, dateRegistered)

Primary Key clientNo, branchNo, staffNo, dateRegistered

Foreign Key clientNo references Client(clientNo)

Foreign Key branchNo references Branch(branchNo)

Foreign Key staffNo references Staff(staffNo)

PropertyForRent (propertyNo, street, city, postcode, rent, room, type,

privateOwnerNo, buisnessOwnerNo, staffNo, branchNo)

Primary Key propertyNo

Foreign Key privateOwnerNo references PrivateOwner(ownerNo)

Foreign Key buisnessOwnerNo references BuisnessOwner(buisnessOwnerNo)

Foreign Key staffNo references Staff(staffNo)

Foreign Key branchNo references Branch(branchNo)

Lease (leaseNo, paymentMethod, depositPaid, rentStart, rentFinsh, deposit, duration,

clientNo, propertyNo)

Primary Key leaseNo

Alternate Key propertyNo, rentStart

Alternate Key clientNo, rentStart

Foreign Key clientNo references Client(clientNo)

Foreign Key propertyNo references PropertyForRent(propertyNo)

Derived deposit (propertyForRent.rent * 2)

Derived duration (rentFinish - rentStart)

PrivateOwner (privateOwnerNo, fName, lName, housNo, streetNo, zipCode, city,

country, telNo)

Primary Key privateOwnerNo

Alternate Key telNo

BusinessOwner (businessOwnerNo, bName, bType, contactName, housNo, streetNo,

zipCode, city, country, telNo)

Primary Key businessOwnerNo

Alternate Key bName

Alternate Key telNo

Advert (propertyNo, newspaperName, advertDate)

Primary Key propertyNo, newspaperName, advertDate

Foreign Key propertyNo references PropertyForRent(propertyNo)

Foreign Key newspaperName references Newspaper(newspaperName)

Newspaper (newspaperName)

Primary Key newspaperName

29

Step 2.2

• Step 2.2 Validate relations using
normalization
– To validate relations in logical data model using

normalization

– Typically already in 3NF at this point

30

Step 2.3 Check integrity constraints

• To check integrity constraints represented in
logical data model
– Keep database accurate, consistent, complete

• Identify:
• Required data

• Unique data

• Attribute domain constraints

• Entity integrity

• Referential integrity

31

Step 2.3 Check integrity constraints

• Required data

–Non null attributes contain valid value

• Unique data

–Some attributes values are unique

• Attribute domain constraints

–Every attribute has domain

32

Step 2.3 Check integrity constraints

• Entity integrity

–Primary key not null

• Referential integrity

– Foreign key must reference existing value
in parent relation

– Foreign key null if participation optional

– Existence constraints

33

Step 2.3 Check integrity constraints

• Existence constraints
– Delete tuple from child relation

• Referential integrity is unaffected

– Insert tuple into child relation

• Foreign key value will be either set to null or to a value
from the primary key attribute of parent relation

• Automatically maintained by foreign key constraint

– Update foreign key of child tuple

• Foreign key value will be either set to null or to a value
from the primary key attribute of parent relation

• Automatically maintained by foreign key constraint

34

Step 2.3 Check integrity constraints
• Existence constraints

– Delete tuple from parent relation
• Referential integrity is lost, if there exists a tuple in child

relation referencing the deleted tuple of parent relation

• Several strategies:
– ON DELETE NO ACTION

» Prevents a deletion from the parent relation

» Safe option

– ON DELETE CASCADE

» Automatically delete all related tuples in child relation

» Dangerous option

– ON DELETE SET NULL

» Sets to null the related foreign key values in child relation

– ON DELETE SET DEFAULT

» Sets to default the related foreign key values in child relation

35

Step 2.3 Check integrity constraints

• Existence constraints
– Insert tuple into parent relation

• Referential integrity is unaffected

– Update primary key of parent tuple

• Referential integrity is lost, if there exists a tuple in child
relation referencing the updated tuple of parent relation

• Strategy:
– ON UPDATE CASCADE (Typical option)

36

Document all integrity constraints

• Document all integrity constraints in the data
dictionary for consideration during physical
design.

37

Existence constraints for relations of DreamHome

Staff (staffNo, fName, lName, position, gender, DOB, salary, managerNo, mgrStartDate)
Primary Key staffNo
Foreign Key managerNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE SET NULL

Owner (ownerNo, fName, lName, telNo)
Primary Key ownerNo

PropertyForRent (propertyNo, address, street, city, postcode, type, rooms, rent, ownerNo, staffNo)
Primary Key propertyNo
Foreign Key ownerNo references Owner(ownerNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key staffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE SET NULL

Client (clientNo, fName, lName, prefType, maxRent)
Primary Key clientNo
Foreign Key staffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

ClientTelNo (clientNo, telNo)
Primary Key clientNo, telNo
Foreign Key clientNo references Client(clientNo)

38

Advertise (propertyNo, newspaperName, dateAdvert, cost)
Primary Key propertyNo, newspaperName, dateAdvert
Foreign Key propertyNo references PropertyForRent(propertyNo) ON UPDATE CASCADE ON DELETE NO
ACTION
Foreign Key newspaperName references Newspaper (newspaperName) ON UPDATE CASCADE ON
DELETE NO ACTION
Newspaper (newspaperName, address, telNo, contactName)
Primary Key newspaperName
Alternate Key telNo

SignLease (leaseNo, signDate, paymentMethod, depositPaid, rentStart, rentFinish, deposit, duration,
clientNo, propertyNo)
Primary Key leaseNo, signDate, clientNo, propertyNo
Foreign Key clientNo references Client(clientNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key propertyNo references PropertyForRent(propertyNo) ON UPDATE CASCADE ON DELETE NO
ACTION
Derived deposit (PropertyForRent.rent * 2)
Derived duration (rentFinish - rentStart)

Viewing (clientNo, propertyNo, viewDate, comment)
Primary Key clientNo, propertyNo
Foreign Key clientNo references Client(clientNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key propertyNo references PropertyForRent(propertyNo) ON UPDATE CASCADE ON DELETE NO
ACTION

Existence constraints for relations of DreamHome

Conceptual Data Model of all Users’ Views

40

Build the Logical Data Model (Relation Diagram) of all Users’ Views for DreamHome

Chapter Summary

• Logical database design is the process of
constructing a model of the data used in an
enterprise based on a specific data model but
independent of a particular DBMS and other
physical considerations

• A logical data model includes relational
schema, and supporting documentation such
as the data dictionary, which is produced
throughout the development of the model

